浮水性植物の流送特性のモデル化と分布域予測手法の構築

長崎大学大学院工学研究科

西田 渉・鈴木誠二・樋口由紀子・朴 英・七石裕貴

浮水性植物の流送特性のモデル化と分布域予測手法の構築 西田 渉*・鈴木誠二**・樋口由紀子***・朴 英***・七石裕貴***

1. はじめに

水辺の水生植物は抽水植物,浮葉植物,沈水植物, 浮水植物の4種類に分けられ、各植物種に適した環境 下で生育する.沿岸帯での植生の形態は水深に応じて 変化し、岸辺の浅い水域には抽水植物が、沖側では浮 葉植物や沈水植物が生息する, 浮標植物は根を水底に はらないため,水流や風によって生息域を変化されう る植物である.ホテイアオイは浮標植物の一種であり, 観賞植物として知られる.一方で,増殖力が強く,海 外では invasive alien として注視されている. 国内では 要注意外来種の一つに挙げられ¹⁾,大量繁茂による栄 養塩循環機構の破壊、アレロパシー効果による在来種 の駆逐等が問題とされている²⁾.また,水利用に関し ては,各種用水路の通水障害や取水施設等の機能低下 を生じさせるため、繁茂した植物の除去作業に多くの 人力と費用が投資されることになる. こうした問題を 未然に防止するには、ホテイアオイの生息量と生息域 について適切な管理と対応が必要とされる.

本研究では、ホテイアオイの生息域の拡大防止には 個体の移動過程の評価手法が必要と考え、まず、ホテ イアオイの物理形状や流体抵抗の室内計測を行った. つぎに、ホテイアオイの相互作用力の評価に個別要素 法を用いた流動予測モデルを構築し、モデル化の妥当 性を検討した.最後に、3次元模擬個体を製作し、流 送過程の再現性を検討した.

2. ホテイアオイの室内計測

2.1 形状計測とその方法

ホテイアオイの物理特性に関する基礎データとし て個体の湿潤密度と水平換算半径,水面上・水面下の 水平投影面積等の計測を行った.計測対象は,2014(平 成26)年6月と7月に長崎県多良見町市布地区の溜池 で採取した個体と同月に別途購入した個体である.な お,データの整理には2009(平成21)年と2013(平成25)

図-1 長径と短径 図-2 水平投影面積

年に計測した結果を加えた.

各計測の方法について述べる.湿潤密度は1つの個 体を水道水で満たした容器に水没させて得た排水容積 と湿潤質量から求めた.水平換算半径は図-1のように, 水に浮かべたホテイアオイを直上方からデジタルカメ ラで撮影し,株の形状を楕円形と仮定して長径と短径 を画像処理によって求める.これによって得た楕円の 面積に等価な円に換算して換算半径とした.水面上・ 下の水平投影面積は透明水槽の水に浮かべた個体を側 方から撮影し,その画像を図-2のように処理して植物 体を占めている画素数を求め,写真の画素数と実際の 撮影面積との関係を乗じて面積を算定した.

2.2 抗力係数の計測方法と計測条件

水流と気流に対するホテイアオイの抗力係数を室 内計測によって求めた.図-3,4 は計測の概要であり, 歪ゲージを貼り付けた平棒の先端に個体を繋げ,水流 または気流を作用させて動歪計を用いて歪を記録した. 計測値と予め計測した平棒の作用力と歪との関係から 流体の作用力を算定した.なお,水流による作用力の 計測には市販のアルミ製の平棒を用いた.気流に関し ては ABS 樹脂製の平棒を用いている.

水流を対象にした計測では、水路下流端のゲートの 高さを変えて生じさせた4種類の流速条件下で実施し

図-4 気流による抗力の計測

た.流速は電磁流速計で計測した.気流の計測では, 送風機の風速を3種類に変えて行った.風洞内の風速 は風向風速計で計測している.

2.3 計測結果

まず,形状計測の結果について述べる.図-5 は個体 の体積と湿潤重量の関係図である.図-6 は換算半径と 水面上・下の水平投影面積との関係を示している.図 には回帰式の算定結果を併記した.個体の体積は10~ 4,682cm³であった.湿潤重量に関しては,計測個体に 様々な成長段階のものが含まれていたので体積に比例 して増加しており,両者の関係は線形の回帰式で評価 できるようである.湿潤密度は0.411g/cm³と評価され た.水平投影面積は水面下の投影面積が水面上の面積 に比べて広い.各面積は換算半径と正の相関にあり, 個体の成長に応じて増加することが示された.

図-7,8 は流水と気流による流体力の計測結果である. 流体力の計測値にはばらつきがあるが,いずれの流体 力も 1/2pAU²に対して正の相関がある.各流れに対す る抗力係数の値が一定値を取ると仮定すると,水流で 約 0.55,気流で約 0.76と評価される.

3. モデル概要

3.1 ホテイアオイの流動モデル

ホテイアオイの流動モデル³⁾では,個体を円柱状の 浮体要素として取り扱うこととし,簡単のために水平 面内の並進と回転の各運動のみ考え,個体に作用する 水流と気流による作用力と流動時に生じる個体相互の 衝突や接岸による作用力を考慮した.回転運動に関し ては,要素の浸水面に生じる水と要素間に生じる回転 に抗する力を導入している.

3.2 要素の衝突による作用力

ホテイアオイの個体同士の衝突や接岸の際に生じる 作用力には個別要素法を適用し,粘弾性体モデルとし て評価した.衝突位置の法線方向と接線方向に一組の 弾性バネとダッシュポットを配した形式で表現してい る.衝突面における法線方向成分と接線方向成分の作 用力をVoigt型モデルで表現する.接線方向の作用力に 関しては,この種のモデルで一般に導入されているよ うに,スライダーを配して滑り限界を与える.ただし, ホテイアオイを円柱要素とみなすが,実際には放射状 に伸びた匍枝の絡み合いが滑りに抗するものとし,図 に示すように,匍枝の絡み合いをn個の凸部を有するク ラッチ機構として表し,個別要素の計算時間間隔内に 衝突要素のいずれかの凸部が他者のそれを追い越す場 合に滑りを生じないものとした.

3.3 流れの評価モデル

本モデルでは水の流れを非圧縮性流体の2次元平面 流として取り扱うことにした.水底面の摩擦応力の評 価には Manning 則を適用し,水表面ではモデルの検証 実験を室内水路で実施しているので風の流れに及ぼす 影響は考慮せず,ホテイアオイが存在する場所で流体 力の反作用力が生じるのみとした.各基礎方程式は有 限要素法を用いて離散化されている⁴⁾.時間方向の積 分には二段階陽的解法を適用した.

4. ホテイアオイの流下実験とモデルの検証

4.1 実験条件と計算条件

実験では、河道内のワンドで増殖したホテイアオイ が洪水流によってワンドから河道に流出する状態を想 定して、図-9に示すように室内水路内に凹部領域を有 する直線水路を設置した.ホテイアオイは凹部に浮か べ、凹部から流出する過程をビデオ記録した.凹部領 域の水路軸方向の幅(開口長)は5種類に変化させた. ホテイアオイは2014(平成26)年7月に購入した10株 を用いており、繰り返し実験で損傷が進むので、その 軽減のために水面からの取り上げは両手鍋で掬い取っ た.流速と流向は電磁流速計で計測した.

数値モデルの計算条件を述べる.計算では水路を三 角形要素に分割しており,要素の頂点を構成する節点 の間隔を 0.075~0.140m とし,空間的に変化させた. ホテイアオイを表す円柱要素の半径は 0.05m とし,水 面下の投影面積をは半径との関係式から算定した.水 流に対する抗力係数 0.55 とした.計算時間間隔は,流 れのモデルとホテイアオイの流動モデルの計算上の安 定性を考慮して 1/2,000s とした.

図-9 水路の平面図(単位:m)

4.2 実験結果と計算結果

実験と数値モデルによる流速ベクトルの空間分布を 図-10に示す.ここでは開口長 0.56m の結果を示す.

流速は,実験結果の直線水路部で約0.304m/sであり, 凹部領域内で約0.047m/sであった.一方,計算結果の 流速は直線水路部で0.24~0.35m/s,凹部内で0.16m/s 以下であり,実験結果と同等程度であった.流向は実 験結果の直線水路部で右岸を向く傾向にあり計算結果 と異なるが,凹部領域内で計測された反時計回りの水 平還流がモデルで再現されている.

ホテイアオイの流動に関する実験結果と計算結果を 図-11,12 に示す.実験結果によると、凹部領域に存在 していたホテイアオイは同領域の流れによって相互に 衝突しながら反時計回りに流送されるが、直線水路部 との接続部に到達した個体は、凹部領域の下流側から 直線水路部へと流出する.図に示した時間には、赤い 丸を付した個体が他の個体に衝突し、直線水路へと流

(D) 計昇結果 図-10 流速ベクトルの空間分布

図-12 モデルによる計算結果

出している.計算結果では要素が凹部領域に滞留する 時間等が実験結果と異なるものの,実験結果と同様に, 個体相互の衝突によって流送方向が変化した個体が直 線水路側に流出することが示されており,各種の係数 値の再評価の必要性があるが,モデルでホテイアオイ の流送過程を再現し得ると考えている.

5. 模擬個体の製作と流下実験

ホテイアオイの複雑な形状をできるだけ表現するために、3次元スキャナーを用いて形状を計測、電子データとし、3次元プリンターで造形した.図-13は出力さ

れた模擬個体であり、ホテイアオイの特徴であるバル ブ状の葉柄と葉の形状が表現されている.また、株の 中央から広がる形状も良好に作り上げられている.

図-13 は製作した模擬個体による流下実験の結果で ある.凹部領域内での個体の流動は,実個体での実験 と同様に,流れの空間分布に従って流送され,反時計 回りの流送が繰り返されていた.個体数が少ないので 個体の相互衝突の頻度は少ないが,図で赤い丸を付し た個体は,中央部に滞留していた別の個体と衝突して 流向を変えられたことで流出している.この流出形態 は実個体での実験でも観察されており,模擬個体によ

図-12 模擬個体の出力例

00:42.13/01:46.01 🔀

00:42.51/01:46.01

図-13 模擬個体の流出実験

る実験の妥当性が示されたものと考えられる.

6. おわりに

浮水性植物のホテイアオイを対象に湿潤密度や換算 半径に対する水平投影面積,水流と気流に対する抗力 係数等を計測した.また,ホテイアオイの流送過程を 表現する数値モデルを構築し,実験結果との比較から 妥当性を検証した.さらに3次元模擬個体の製作と流 下実験を行った.計測結果から,湿潤密度は約0.4g/cm³ であり,個体の体積と水平投影面積は換算半径の関数 として表現し得ることが示された.ホテイアオイの流 下実験と計算結果との比較から,構築したモデルで凹 部領域からの個体の流出過程を評価し得ることが示さ れた.今後は,計測条件を増やして係数値の収集に努 めると共にモデルの検証を重ねて,予測精度の向上と 実水域への適用を図りたい.

参考文献

1) 環境省HP(http://www.env.go.jp/nature/intro/)

- Shanab, S. M. M., Shalaby, E. A., et al.: Allelo- pathic effects of water hyacinth [eichhornia crassipes]. PLoS ONE,5(10),art.no.e13200, 2010.
- 西田,鈴木:諌早湾調整池におけるホテイアオイの流動 予測に関する研究,水工学論文集,第54巻,2009.
- 中島:複断面水路の洪水流に関する水理学的研究,長崎 大学大学院修士論文,pp.36-45,1991.

成果発表

- 朴,西田,樋口,鈴木,七石:個別要素法によるホテイ アオイのモデル化と流送域の予測に関する研究,長崎大 学大学院工学研究科研究報告, Vol.45, No.84, pp.63-69, 2015.
- ② 朴,西田,樋口,鈴木,七石:ホテイアオイの流体抗力の計測と流動予測に関する研究,平成26年度日本水環境 学会九州支部研究発表会講演概要集, pp.63-69, 2015.
- ③ 朴,西田,樋口,鈴木:浮水性植物の流動予測モデルの 構築に関する研究,第49回日本水環境学会年会講演概要 集,pp.63-69,2015.